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a b s t r a c t

The extraction and burning of woody biomass at rates exceeding re-growth (i.e. non-renewable
extraction) results in net emissions of CO2. Quantification of the amount of non-renewable woody
biomass through a robust and widely applicable method is urgently needed for a wide variety of ap-
plications including cookstove carbon-offset projects, national GHG inventories, and sustainable forest
management strategies under REDDþ. Within this context, we developed “Mofuss” (Modeling fuelwood
savings scenarios), a dynamic model that simulates the spatiotemporal effect of fuelwood harvesting on
the landscape vegetation and that accounts for savings in non-renewable woody biomass from reduced
consumption. The model was tested in western Honduras where collected and marketed fuelwood is
used by the residential sector in both urban and rural settlements. We argue that geospatial modeling,
aimed at representing real situations more closely while integrating uncertainty, should be used in
calculations of carbon savings from cookstove projects or fuel switching interventions.

© 2016 Elsevier Ltd. All rights reserved.
Software and data availability

Mofuss integrates a set of scripts that requires some freeware to
be installed first. The first step consists in downloadingMofuss user
manual: www.mofuss.unam.mx. This document contains detailed
but concise instructions for downloading, installing and using
Mofuss and any other needed freeware.

Mofuss (version 1.0) was designed and coded by Adrian Ghilardi
between September 2011 and April 2015 with contributions from
four co-authors of the present work: Jean-François Mas, Robert
Bailis, Rudi Drigo and OmarMasera. A fifth co-author, Ernesto Vega,
ilardi), Rob.Bailis@sei-us.org
@ciga.unam.mx (M. Skutsch),
m (A. Quevedo), omasera@
u (P. Dwivedi), rudi.drigo@
helped with R code issues during debugging. Developer contact
details are available in affiliations of authors.

Dinamica EGO (one of the required freeware) is only available
forWindows operating system.Mofuss has been tested successfully
in various configurations of Windows 7, 8 and 10 versions, and in
Intel-based Macs using Boot Camp. There is no recommended
hardware as overall processing time will depend on the size of the
selected area of interest. For replicating the present study area (4
departments in western Honduras), a desktop with an Intel i7 CPU
at 3.40 GHz with 16 GB of RAM should take about 24e36 h for
completing each of the threemore time demanding processes: IDW
submodule and both simulations (BaU and ICS) using 100 MC re-
alizations. A much smaller areawith fewMC realizations will take a
couple of minutes using the same equipment. The user manual also
provides a link to already processed IDW indexes for the same
study area as shown in this work, in order to gain some time if
trying to replicate this particular study example. Both 64-bit and
32-bit systems will work (although under 32-bit some figures will
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Abbreviations and definitions

AGB (aboveground biomass)
CDM (Clean Development Mechanism)
fNRB (fraction of non-renewable biomass): When NRB (defined below) is referred to as a fraction of total fuelwood use, the

acronym fNRB is used instead, standing for the “fraction of non-renewable biomass”, a numberwhich describes the degree to
which of the harvesting of wood is unsustainable

Forest We define forest or “forest cover” broadly, to include sparse and mosaic woodlands and rangelands not necessarily classified
as “forest” under more conventional definitions which use thresholds for canopy cover or tree height

Fuelwood, also known as firewood Woody biomass used as an energy source without any thermochemical transformation and with
little or no mechanical processing

ICSs (improved cookstoves): Efficient end-use cooking devices using less fuel and emitting fewer pollutants in comparison to
traditional (i.e. less-efficient) models. It is used interchangeably with efficient or fuel-saving cookstoves

IDW (Inverse Distance Weighted)
K (carrying capacity): Maximum achievable AGB stock given a certain class of Land Use and Land Cover, plus any other

biophysical constraints. K is assumed to remain constant in time within Mofuss
LULCC (Land Use and Land Cover Change): Direct or indirect humanmodification of the earth's terrestrial surface. Land cover refers

to the physical and biological cover over the surface of land, including water, vegetation, bare soil, and/or artificial structures.
Land use is defined in terms of human activities such as agriculture, forestry and building construction that alter land surface
processes including biogeochemistry, hydrology and biodiversity

MAI (Mean Annual Increment): Equivalent to Maximum Sustainable Yield (MSY)
MC (MonteCarlo simulation)
NRB (non-renewable biomass): Extraction of woody biomass at rates exceeding the rate of natural re-growth within a given time

period, most commonly one year
tDM (tons of dry matter)
TOF (trees outside forests): Trees on farmland, household compounds, and roadside commons, where wood is accessed by

pruning live trees and/or collecting dead/downed branches. This category also includes shade trees in coffee plantations,
which are pruned regularly and constitute a major source of wood in coffee-growing parts of the study region

Simulation Corresponds to the progression of fuelwood harvest - regrowth spatial patterns over a given time period in discrete time
steps or iterations. In the particular example of our case study each simulation lasted 30 years, by annual time steps.
Iterations cannot be shorter than a week or longer than 10 years, while simulation periods have no upper bounds

Realization Each of many homologous simulations (i.e. set under same parameters and assumptions) that are run to account for
uncertainty and sensitivity. Realizations should be understood as the process of how simulations “come out” after each
Monte Carlo run
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be purposely rendered at lower resolution).
Mofuss and any other needed software are freely available to

download and use, and all Mofuss scripts can be opened, edited and
saved using any free code editor such as Notepadþþ or Sublime
Text. Mofuss scripts were coded in Dinamica EGO (.egoml), R (.R),
LaTeX (.tex) andWindows batch scripting (.bat). Mofuss scripts and
associated files (e.g. ffmpeg.exe, zip.exe, pdf messages) is roughly
45 MB, and the Honduras dataset (spatial raster data in geotiff,
spatial vector data, and tables) is roughly 550 MB and is down-
loadable as a separate file, as explained in the user manual.

1. Introduction

Despite the fact that traditional wood energy (fuelwood and
charcoal) is still in widespread use in many developing countries
(IEA, 2012a, b), the impact of woodfuel harvesting on forests and
woodlands is still a point of contention. Identified as the “other
energy crisis” in the 1970s (Eckholm, 1975), fuelwood extraction
and charcoal production by poor rural and peri-urban populations
were seen then as major drivers of environmental degradation (de
Montalembert and Clement, 1983). Some analyses still report a
direct connection between woodfuels and “severe deforestation”
(e.g. Pang et al., 2013; Singh et al., 2010) or “forest degradation” (e.g.
Ahrends et al., 2010; Cantarello et al., 2014; Moroni and Musk,
2014; Orozumbekov et al., 2015; Ryan et al., 2012; Specht et al.,
2015). However, others think woodfuel demand has limited
impact on forest cover (e.g. Hansfort and Mertz, 2011; Shrestha
et al., 2013) because it is overshadowed by other socioeconomic
and ecological processes (de Waroux and Lambin, 2012; Dewees
and Arnold, 1997; Foley, 1985; Hosier, 1993).

Broad generalizations are inherently misleading, as spatiotem-
poral patterns of woodfuel supply and demand are site specific and
impacts on vegetation vary greatly from place to place (Ghilardi
et al., 2007; Wangchuk et al., 2014) and as a result of specific pat-
terns of resource use, e.g. subsistence fuelwood or commercial
charcoal (Naughton-Treves et al., 2007). In addition, vegetation re-
sponds to disturbance inways thatmay impact harvesting practices,
changing species preference, extraction sites, and volumes extrac-
ted (He et al., 2009; Jagger and Shively, 2014; Ruger et al., 2008).

Within the policy arena, more nuanced and accurate assess-
ments accounting for spatiotemporal effects are needed to better
predict the impact of interventions such as improved cookstove
(ICS) programs and improved charcoal kilns. In the past, positive
impacts have been assumed as a matter of faith in the technology
rather than as demonstrated through scientific analysis. Thus, there
is a pressing need for models which will robustly assess impacts of
interventions, such as carbon fluxes, since program financing is
often predicated on the generation of carbon credits.

Geospatial modeling techniques are a promising option to
render the spatiotemporal variability explicit (Costanza and Voinov,
2004; Deaton and Winebrake, 2000; Murayama and Thapa, 2011;
Paegelow and Camacho-Olmedo, 2008). The core questions that
need to be addressed are:

1) How much woodfuel is harvested at a given location within a
specific time frame?
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2) How does vegetation respond to this pressure, as measured by
above ground biomass stock and growth rates?

3) How do changes in woodfuel demand (for example, through the
dissemination of fuel-saving stoves) alter patterns of harvest
and re-growth over time?

To respond to these questions for the case of residential fuel-
wood (i.e. firewood), we developed Mofuss (Modeling fuelwood
savings scenarios) version 1.0, a spatially-explicit and dynamic
model that simulates the effect of fuelwood harvesting on local
vegetation. The overall goal in constructing the model was to
quantify the expected reductions in unsustainable harvesting of
woody biomass resulting from external interventions that reduce
fuelwood demand. It is important to note that Mofuss was designed
to be applied in study areas where fuelwood is a major energy
source for the residential sector, in which collection of wood for
self-use and localized markets operates, and not for charcoal
dominated landscapes inwhich harvest patterns and trade markets
differ significantly (Masera et al., 2015).

We start by briefly describing the study area and explaining our
rationale for choosing to model this location. A synthesis of the
modeling approach is developed in Section 3, and is expanded in
the online Supplementary Material (Appendix A). In Sections 4 and
5, we provide a summary of the most relevant results, with addi-
tional details provided in the online Supplementary Material
(Appendix B), including animated maps. Section 6 provides a dis-
cussion of innovative features of the model compared to previous
approaches. Key improvements to the model are identified in the
conclusions in Section 7.

2. Study region

The study area is located in western Honduras, between 14� and
15�30'north latitude and 88� and 89�300 west longitude (Fig. 1). It
consists of four departments (1st level administrative units) covering
15,660 km2. A Land Use and Land Cover (LULC) map was produced
Fig. 1. Study region in western Honduras.
Sources:Tree cover data (2000) downloaded from http://earthenginepartners.appspot.com
terest (black dots in the map on the right) come from the last available national census (I
biomass growth and stock parameters, and uncertainty assumptions. The spatial resolution i
Material for a map depicting LULC classes, annual fuelwood use and road network. Figure
for the year 2000 using Landsat imagery and re-sampled to 100 m
resolution. The map depicts a mosaic landscape of urban space,
water bodies, and bare land (1%), agriculture (24%), shrublands (14%)
and forest consisting of pine (6%), broadleaf (46%), and mixed (9%)
stands. According to the national census of 2001 (INE, 2001), there
were 5837 towns andvillages in the area, hosting164,750households
using fuelwood either alone or in combinationwith other fuels such
as liquefied petroleum gas (LPG) and electricity. The two largest
towns are SantaRosa deCop�an (pop. 26,000) andSanta B�arbara (pop.
14,000) (INE, 2001). Additional details on the LULC map and fuel-
wood demand in the study area are provided in Appendices A-1 and
A-2 respectively in online Supplementary Material.

Several characteristics make this an ideal area for this study. First,
there is widespread and intensive use of residential fuelwood. Wood
is obtained both by self-harvest and purchasing from commercial
collectors. There is also a successful ongoing ICS project that currently
disseminates 2e3000 stoves permonth (ProyectoMirador, 2015). The
project plans to expand into neighboring departments, which will
allowus to build on thepresent study. In addition, amoderate amount
of basic data required to parameterize the model is available,
including fuelwood use and biomass growth parameters from scat-
tered permanent plots. However, this data is not fully representative
of the entire landscape, so we developed modules to accommodate
uncertainty (described in more detail below). Developing a novel
model in a data-rich setting might result in a tool that is difficult to
apply in data-poor locations. Since data-poor settings are the rule
rather than the exception, the case selected is anappropriate example.

3. Methods

Mofuss projects fuelwood harvesting sites in time based on the
accessibility of fuelwood sources. The vegetation responds to harvest
in each iteration based on the amount of wood extracted and re-
growth functions for trees within and outside forests. A Monte
Carlomodule accommodates inherent uncertainties associatedwith
input parameters. The model also accounts for observed and
/science-2013-global-forest/download_v1.1.html (Hansen et al., 2013). Localities of in-
NE, 2001). Aboveground biomass is estimated by the model following the LULC map,
s 100 m after cropping and resampling. Please refer to Fig. A.1 in online Supplementary
automatically generated by Mofuss.

http://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.1.html


Fig. 2. Simplified flowchart of Mofuss showing main inputs and processes within each of the modules, and final outputs.
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expected trends in forest loss andgain that are unrelated to fuelwood
harvesting. This allows for some fuelwood demand to be satisfied
from by-products of land clearing activities like agricultural expan-
sion, and to adjust the fuelwood supply map at each time step.

Mofuss was built in a freeware modeling environment called
“DINAMICA EGO” (EGO standing for Environment for Geoprocessing
Objects), designed to construct complex models for the analysis and
simulation of spatially and temporally dynamic phenomena
(Soares-Filho et al., 2010). By using dataflow language (dragging and
connecting algorithms via their ports), models are constructed and
shown as diagrams, which are relatively easy to comprehend and
modify by users unfamiliar with computer languages and scripts.
The software has become popular among users analyzing a wide
range of dynamic phenomena (e.g. Bowman et al., 2012; Brando
et al., 2014; Carlson et al., 2012; Ferraz, 2013; Kolb et al., 2013;
Nepstad et al., 2009; Pathiranaa et al., 2013; Perez-Vega et al.,
2012; Soares et al., 2010, 2012, 2006; Sonter et al., 2014a; Sonter
et al., 2014b). In addition, DINAMICA EGO scripts in Mofuss trigger
several external processes running in R (www.r-project.org),
FFmpeg (www.ffmpeg.org) and LaTeX (miktex.org) which project,
resample, rasterize and crop input data, conduct statistical analyses,
generate graphs, animated maps, and a final summary report in pdf.

Mofuss simulates spatiotemporal dynamics in a landscape
subject to traditional fuelwood extraction. It describes the changes
in a spatial pattern from time t to time tþ1, such that:

Xðtþ1Þ ¼ f
�
XðtÞ; YðtÞ

�
(1)
where X(t) is the spatial pattern at time “t” and Y(t) is a set of data
elements that may represent the transition, such as maps, tables,
matrices, mathematical/logical expressions, or constants. Mofuss
has three primary functions:

1) Project the pressure exerted by fuelwood harvesting on existing
woody biomass sources.

2) Estimate the expected response of the vegetation to disturbance
in terms of AGB growth.

3) Estimate the effect of interventions that reduce fuelwood con-
sumption on existing forest stock and growth.

Mofuss consists of four components or modules (Fig. 2): 1) a
friction component that creates impedance maps; 2) a modified
Inverse Distance Weighted (IDW) algorithm that creates pressure
maps depicting the propensity of fuelwood harvest events; 3) a
supply/demand component that projects the expected quantity of
fuelwood to be harvested in each time frame in each pixel, and the
vegetation response to that disturbance; and 4) a forest loss and
gain module that projects expected land clearing or forest gain
events in each time step, based on past observations. Table 1 lists all
input maps and parameters required by the model, and their po-
tential availability for other study areas.
3.1. Location and intensity of harvesting events

3.1.1. Fuelwood demand
The magnitude and spatial distribution of fuelwood demand is

http://www.r-project.org
http://www.ffmpeg.org
http://miktex.org


Table 1
Model inputs and parameters.

# Input dataset Type of
dataa

Mandatory/
optional

Availabilityb Description

Spatial data 1 Digital
Elevation
Model

raster mandatory þþþþþ 3 or 1 arc-sec digital elevation terrain model with global coverage available freely at: www.
jpl.nasa.gov/srtm.

2 Tree cover 2000 raster mandatory þþþþþ 30 m tree cover map with global coverage available freely at: http://earthenginepartners.
appspot.com/science-2013-global-forest/download_v1.1.html.

3 Forest loss
(annual) 2000
e2013

raster mandatory þþþþþ 30 m forest loss map (annual loss events between 2000 and 2013) with global coverage
available freely at: http://earthenginepartners.appspot.com/science-2013-global-forest/
download_v1.1.html.

4 Forest gain
(whole period)
2000e2012

raster mandatory þþþþþ 30m forest gain map (gain events for the period 2000e2012) with global coverage available
freely at: http://earthenginepartners.appspot.com/science-2013-global-forest/download_
v1.1.html.

5 LULC circa 2000 vector or
raster

mandatory þþ Produced for this study from Landsat imagery. See Appendix A-1 in online Supplementary
Material.

6 Villages and
cities circa 2000

vector or
raster

mandatory þ Requested specifically for this study. Source: Instituto de Conservaci�on Forestal de Honduras
www.icf.gob.hn. Optional if a raster map depicting the spatial distribution of fuelwood use is
available.

7 Protected areas
circa 2000

vector or
raster

mandatory þþþþ Requested specifically for this study. Source: Instituto de Conservaci�on Forestal de Honduras
www.icf.gob.hn.

8 Road network
circa 2000

vector or
raster

mandatory þþ Idem

9 Rivers circa
2000

vector or
raster

mandatory þþ Idem

10 Mask vector or
raster

mandatory n.a. Area for which all input datasets are available.

11 Analysis area vector or
raster

optional user defined Area of interest within mask. Mostly to account for border effects and for debugging
purposes as speed is drastically increased when using relatively small areas.

12 Villages and
cities of interest

vector or
raster

optional user defined Subset of villages and cities of interest for the analysis.

13 Biophysical
parameters
eventually
affecting
biomass
growth and
stock

vector or
raster

optional þ The model can accommodate other variables (apart from vegetation types from the LULC
map) eventually affecting woody biomass stock and growth rates such as site quality, solar
radiation, soil type, rainfall, temperature, among others.

14 Land tenure
eventually
affecting
accessibility

vector or
raster

optional þ If spatial information about land tenure and rules about access to resources are know, then it
can be accommodated to affect accessibility; in a similar way as protected areas do.

Non-spatial
data

15 Fuelwood use csv table
or
spatial
attribute
table

mandatory þþ Table showing collected and marketed fuelwood use in each village and city in a business as
usual scenario i.e. assuming ALL households cook with traditional devices most commonly
found in the study area. See Appendix A-2 in online Supplementary Material.

16 Pixel size
(spatial
resolution)

Real
value

mandatory user defined Should be set in accordance with resolution and scale of input spatial data. Resolution
greatly affects the speed of geoprocessing operations.

17 Iteration length
(temporal
resolution)

Integer
value

mandatory user defined Time length in weeks for each time step, assuming 48 weeks in a year, i.e. a value of 48 is
equal to one year.

18 Simulation
length

Integer
value

mandatory user defined Time length for each simulation in years. In our case study it was set to 30 years.

19 Monte Carlo
runs

Integer
value

mandatory user defined Number of Monte Carlo runs.

20 Startup year Integer
value

mandatory user defined Should be set to year 2000 unless all spatial datasets are available for a different year.

21 AGB growth
parameters
table

csv table mandatory user defined Table in csv format with values by LULC class for maximum sustainable yield (rmax) mean
and SD, maximum achievable stock (K) mean and SD and initial stock (optional) mean and
SD.

22 Trees outside
forest (TOF)
fuelwood
supply
potential

csv table mandatory user defined Amount of fuelwood potentially available from TOF assuming dead collection and pruning.
Mean and SD values are required.

23 rmax values
passing
through Monte
Carlo

yes/no mandatory user defined If NO, rmax mean is used for all Monte Carlo runs.

24 K values
passing
through Monte
Carlo

yes/no mandatory user defined If NO, K mean is used for all Monte Carlo runs.

25 Initial stock
values passing
through Monte
Carlo

yes/no mandatory user defined If NO, Initial stock mean is used for all Monte Carlo runs.

(continued on next page)
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Table 1 (continued )

# Input dataset Type of
dataa

Mandatory/
optional

Availabilityb Description

26 Use tree cover
as initial stock
i.e. % of K

yes/no mandatory user defined If NO, then initial stock values by LULC class must be defined in AGB growth parameters
table.

27 TOF
assumptions
passing
through Monte
Carlo

yes/no mandatory user defined If NO, mean value of fuelwood from TOF is used for all Monte Carlo runs.

28 Fuelwood
savings

Integer
value

optional user defined Fuelwood savings as a percentage of use in previous iteration and across ALL villages and
cities. Assumes an even spatial dissemination pattern (due for example to the progressive
deployment of ICS). The model can also accommodate an uneven spatial dissemination of
savings, but pressure maps are then re-calculated for each new time step, extending
considerably the processing time - moreover for very large analysis areas.

29 Instant
fuelwood use
modulator

Integer
value

optional user defined Modulates unitary fuelwood use (read from Fuelwood use table - parameter#15) in any of
both BaU and Intervention scenarios. Mostly for sensitivity purposes.

30 Fuelwood users
growth rate

Integer
value

optional user defined Annual growth rate (as per thousand rate) of fuelwood users, or alternatively, of total
population as proxy if saturation is assumed to remain stable in time.

31 Forest loss/gain yes/no mandatory user defined If No, prospective simulation of forest loss/gain events is bypassed. If Yes, a prospective
landscape simulation model will run in ensemble with fuelwood harvest and regrowth
patterns. If no parameters are modified, the Forest loss/gain submodel will run as a fully
deductive (i.e. statistical) model. Otherwise, an arrange of parameters can be tuned to
increase its predictability. See Appendix A-6 in online Supplementary Material.

32 Percentage
ratio of
fuelwood from
forest loss
events to be
sold

Integer
value

mandatory user defined Percentage of fuelwood eventually available from deforestation that will be sold, instead of
gathered by walking collectors. Bypassed if Forest loss/gain is set to NO.

33 Ease to enter
protected areas

Integer
value

mandatory user defined A value of 100%means that protected areas pose no access restriction to fuelwood collectors. It
alters the pressuremap. Different values canbe assigned to different protection classifications.

34 Harvest
threshold
walking

Integer
value

mandatory user defined Minimum amount of AGB per pixel “attractive” enough for walking fuelwood collectors.

35 Harvest
threshold
vehicle

Integer
value

mandatory user defined Minimum amount of AGB per pixel “attractive” enough for driving fuelwood collectors.

36 Harvestable
pixels walking

Integer
value

mandatory user defined Percentage of the landscape assumed to be visited by walking fuelwood collectors at each
time step.

37 Harvestable
pixels vehicle

Integer
value

mandatory user defined Idem but for driving fuelwood collectors.

38 Harvestable
pixels passing
through Monte
Carlo

yes/no mandatory user defined If Yes, the percentage of the landscape assumed to be visited in each time step will vary
randomly assuming a 100% SD.

39 Prune factor for
walking
fuelwood
collectors

Integer
value

mandatory user defined A value that multiplies the number of all harvestable pixels with the highest pressure, to
allow for a stochastic subsequent “re-selection”. For example, a prune factor of 10 means
that 10 times the amount of harvestable pixels with the highest pressure will be selected.
Within this new sample, 10% of pixels will be randomly re-selected. Prune factor high values
drive the seeding mechanism to fully stochastic while a prune factor equal to 1 would drive
the seeding mechanism to fully deterministic.

40 Prune factor for
driving
fuelwood
collectors

Integer
value

mandatory user defined Idem, but for driving fuelwood collectors.

41 Modified IDW
exponent

Real
value

mandatory user defined Modulates the interpolation function (“n” in Eq. (3)) to be more or less concentrated around
demand centers. Can be calibrated with ground-data showing fuelwood collection points.

42 Modified IDW
exponent
passing
through Monte
Carlo

yes/no mandatory user defined If NO, the modified IDW exponent set value is used for all Monte Carlo runs.

43 Cost-distance
passes

Integer
value

mandatory user defined Number of passes from DINAMICA's cost-distance map tool. The higher the value, the most
accurate results, in detriment of geoprocessing time.

44 Maximum
distance for
gathering
fuelwood

Integer
value

mandatory user defined Maximum cost-distance in hours that could possibly be travelled by vehicle or walking to
gather fuelwood. Should be set to a precautious maximum, e.g. two days.

45 Number of
Monte Carlo
histograms per
figure for
forests and
woodlands

Integer
value

mandatory user defined Value of histograms in multiple of five to be accommodated in each Tiff figure. Will depend
on number of LULC classes.

46 Number of
Monte Carlo
histograms per
figure for TOF

Integer
value

mandatory user defined Idem

robbailis
Highlight



Table 1 (continued )

# Input dataset Type of
dataa

Mandatory/
optional

Availabilityb Description

47 Re-run Monte
Carlo

yes/no mandatory user defined If NO, the same Monte Carlo datasets are used every time. Useful when comparing scenarios
or conducting sensitivity analysis.

48 Maps and
animations
switch

yes/no mandatory user defined If NO, maps and animations (eventually time consuming) are not produced.

49 Path to R.exe string mandatory user defined Path to R executable file, for 32 or 64 bit OS.
50 Path to

FFmpeg.exe
string mandatory user defined Path to FFmpeg executable file, for 32 or 64 bit OS.

51 Number of CPU
cores

Integer
value

optional user defined Number of CPU cores (physical or virtual) to be used by different modules.

a Almost any raster or vector format is accepted as Mofuss uses the Geospatial Data Abstraction translator Library: www.gdal.org.
b Guesstimate based on global datasets accessible from the Internet.
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calculated following Eq. (2),2 (parameter#15 in Table 1):

CðtÞ ¼
0
@Xn

i¼1

Xn
j¼1

hhij$uj$fci

1
A

ðtÞ
þ
0
@Xn

i¼1

Xn
j¼1

hhij$uj$fbi

1
A

ðtÞ
(2)

where C(t) is total residential fuelwood consumption in tDM for any
time step “t”; hhij is the number of households using fuelwood, by
community “i” using a cooking device “j” (a traditional or even
improved stove but considered as the business as usual (BaU)
scenario); uj is household consumption in tDM; fci is the average
fraction of fuelwood that is collected; and fbi is the average fraction
of fuelwood that is bought. Additional details are provided in
Appendix A-2 in online Supplementary Material.
3.1.2. Friction maps
The spatial distribution of fuelwood harvesting and collecting sites

is determined inpart by their proximity to demand centers. Friction or
impedance maps are a geo-processing means to account for “prox-
imity” in a realisticway (Salonenet al., 2012). In thesemaps, eachpixel
or cell can be characterized by the time a fuelwood collector needs to
travel through it on foot or by vehicle (depending on the pathways
used in a given locality). The data required to construct friction maps
are displacement velocities of both walking and driving fuelwood
collectors, as affected by topographic features such as slope, road
conditions, rivers and water bodies, or land cover types (e.g. dense or
thorny vegetation reduces displacement velocities). Additional details
are provided in Appendix A-3 in online Supplementary Material.
3.1.3. Seeding harvesting sites based on pressure maps, a stochastic
component and overall fuelwood demand

An IDW component creates a pressure map (i.e. depicting the
probability or propensity of each pixel to be harvested for fuel-
wood) for two types of fuelwood collectors: 1) peoplewho travel on
foot and gather fuelwood for home use, and 2) commercial wood
sellers who use vehicles, which allow them to access distant areas
and carry large volumes of wood. Eq. (3) defines how pressure
maps are calculated:

PðtÞk ¼
 Xn

i¼1

Cik
dnik

!
ðtÞ

(3)

where P(t)k is an index that indicates the pressure by both types of
fuelwood collectors “k” for any time step “t”; C is residential
2 Equations are expressed in their discretized form, as the model works in
discrete time steps at least one week long; and also, because fuelwood collection is
best described by discrete events. Given that all equations are applied to raster data,
we avoided the use of a pixel index for clarity.
fuelwood consumption in tDM by locality, village or city “i”; d is the
cumulative time (cost-distance) needed to reach any pixel from
each locality or village; and n is a real positive number that mod-
ulates the decay function of the interpolation.

The resulting index is a modified Inverse Distance Weighted
interpolation, in which distance (in linear units) is replaced by cu-
mulative cost (in time units). The power of this simple equation re-
sides in the fact that everypixelwithin the analysis area is influenced
by all consumption centers. This avoids the necessity of determining
fuelwood-reachable areas or so called “fuelwood-sheds” (Ghilardi
et al., 2009) or “reachable” areas (The Gold Standard, 2011), which
do not account for overlapping demand centers and are difficult to
define. The fact that people aremore likely to collect fuel nearer their
place of residence is built into themodel in the form of travel costs. If
some harvesting frequencies and locations are known (from ground
GPS measurements for example), then the decay function n can be
calibrated to reflect observed collectionpatterns. This calculationhas
been previously reported by various authors (Bailis et al., 2015; Chen
et al., 2014; Ghilardi and Mas, 2011).

Pressure maps are then loaded into a seeding module ruled by a
stochastic mechanism. Finally, overall consumption of self-
collected and purchased wood from the study area is distributed
over themaps resulting from the stochastic seedingmechanism. An
expanded description of the seeding harvesting mechanism
coupled with the stochastic component to render a distribution of
harvested fuelwood per pixel is available in Appendix A-4.
3.2. Modeling fuelwood supply

There are three primary sources of residential fuelwood:

1) Forests and Woodlands: fuelwood is supplied by pruning or
cutting live trees or collecting fallen branches and dead wood.

2) Trees outside forests (TOF): includes trees on farmland, house-
hold compounds, and roadside commons, which are accessed by
pruning live trees and/or collecting dead/downed branches. This
category also includes shade trees in coffee plantations, which
are pruned regularly and constitute a major source of wood in
coffee-growing parts of the region.

3) Land clearing activities: includes clearing forest or scrubland for
new cultivation or grazing and forms an important source of
wood supply.

Woody biomass growth is assumed to be a function three factors:
the stock in the previous iteration, the maximum growth rate (rmax:
the first derivate of the “S-type” curve), and the maximum biomass
density or “carrying capacity” (K) (Bailis et al., 2015). Both rmax and K
depend on biophysical parameters such as land cover, soil, hydrology,
insolation, and altitude, among others. However, data for multiple
biophysical growth parameters is rarely available. In our case study,

http://www.gdal.org
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for example,wedefineK and rmax based solely on LULCclass (Table1).
Eq. (4) describes this relationship (parameter#21 in Table 1):

AGBðtþ1Þi ¼ AGBðtÞi þ AGBðtÞi$rmax$

�
1� AGBðtÞi

Ki

�
(4)

AGB(t)I andAGB(tþ1)i are above groundwoodybiomass suitable for
fuelwood in LULC class “i”, at times “t” and “tþ1” respectively. The
initial biomass stock, AGB(t¼0), will determine the future behavior of
AGBduring the simulationperiod.Mofuss accepts LULCmapswith as
many classes as available, but stock and growth parameters for each
class are also required. Maps showing a continuous spatial distribu-
tion of AGB(t¼0) (e.g. Cartus et al., 2014) are equally valid (even
desirable) because Eq. (4) is calculated on a pixel by pixel basis.

In addition, if AGB falls below a tunable threshold, pixels
become “unharvestable” until natural re-growth raises them over
the threshold. In this set of simulations, the threshold was set to 5.0
tDMha�1for people using vehicles and 0.1 tDMha�1for people
harvesting on foot. It is worth noting that these values are
“guesstimates” with no literature or field data backup. But given
that they only apply to woodlands and forests, it is expected that
people will turn to neighbor areas where AGB is above these values
or at least keep pruning trees outside forests and collecting scat-
tered dead wood from closer non-forest areas. Additional details
are provided in Appendix A-5.3 in online Supplementary Material.

3.3. Integrating uncertainty of input parameters

Mofuss includes a Monte Carlo (MC) simulation to accommo-
date the inherent uncertainty of woody biomass growth patterns
and AGB stock accumulation. With eachMC run, all woody biomass
growth parameters vary randomly following truncated normal
probability density functions (Fig. A.6 in online Supplementary
Material). The default number of runs was set to 100.

Other parameters passing through the MC module but not
related to biomass growth are the portion of the landscape “visited
at least once” for fuelwood collection in each iteration and a prune
factor that regulates the degree of stochasticity of the seeding
mechanism (Fig. A.7 in online Supplementary Material). Both pa-
rameters are listed in Table 1.

3.4. Sensitivity analysis

Sensitivity of results to some input parameters shown in Table 1
was tested by running 6 simulations of 100 Monte Carlo re-
alizations each, while allowing one parameter per simulation to
vary randomly and holding the others constant. Parameters
analyzedwere: percentage of landscape harvested at each iteration,
prune factor, biomass maximum achievable stock K, growth rate
rmax, and available fuelwood from trees outside forests (Section 5).

3.5. Model outputs: supply-demand balances, NRB and fNRB

As defined in the list of acronyms, non-renewable biomass
(NRB) is the amount of harvested wood that exceeds natural re-
growth over a given time period, most commonly one year. When
NRB is given as a fraction of total fuelwood use, fNRB (“fraction of
non-renewable biomass”) is used instead. This describes the pro-
portion of the fuel wood harvest that is unsustainable.

In the model, each time step is one iteration (one year in our case
study) and n-steps constitutes a simulation. Mofuss runs for any
specified simulation period times the number of Monte Carlo runs
that are set, producing three main output parameters: a) the
remaining AGB stock (growth minus harvest at t ¼ n), b) NRB
calculated in pixels where decreases in AGB have occurred (Eq. (5)),
and c) fNRB, calculated as the fraction of total fuelwood consumption
that is non-renewable (Eq. (6)). These twobasic outputs aremodeled:
1) within each iteration (mimicking a static supply-demand anal-
ysis); 2) within each simulation period; and 3) for the entire set of
Monte Carlo realizations for NRB and fNRB. For each pixel:

NRBðt¼nÞ ¼
�
AGBðt¼0Þ � AGBðt¼nÞ if AGBðt¼0Þ >AGBðt¼nÞ

0 if AGBðt¼0Þ � AGBðt¼nÞ
(5)

Where NRB(t¼n) is the amount of fuelwood in tDM which, when
harvested, results in a net decrease in AGB between time t ¼ 0 and
t ¼ n. In this assessment, n can consist of one or many single-step
iterations: one iteration corresponds to the static supply-demand
analysis described above as output1; n ¼ 30 corresponds to the
entire simulation described above as output 2. Each MC run gen-
erates a different value of NRB(t¼n) by repeating Eq. (5) in each run
(output 3). NRB(t¼n) is calculated at the pixel-level, meaning that it
does not account for any increment of AGB occurring in areas where
AGB(t¼n)� AGB(t¼0). In other words, NRB(t¼n) is not the net decrease
of AGB over the entire “fuelwood-shed”. Instead, it accounts for
losses of AGB only in the set of pixels where a loss occurred.

Finally, the fraction of NRB relative to wood harvested is calcu-
lated as:

fNRBðt¼nÞ ¼
NRBðt¼nÞ
Cðt¼nÞ

(6)

3.6. Simulation scenarios: baseline and mitigation

As mentioned above, Mofuss runs for many time step iterations
within a simulation. C(t) can be expressed as C(n), corresponding to
the summed fuelwood consumption between time 0 and time n
(Eq. (6)). As C(t) is loaded at each single-step iteration, temporal
(and spatial) changes in fuelwood use, which may be induced by a
gradual and spatially uneven diffusion of ICS, can be simulated in
Mofuss. However, if spatiotemporal information about past and
expected deployment of ICS is lacking, Mofuss can simulate hypo-
thetical ICS diffusion that is evenly distributed in space, i.e. pro-
portional to fuelwood use trends in the BaU scenario.

We ran Mofuss from 2000 to 2030 under two scenarios: BaU,
assuming average values of fuelwood use associated with tradi-
tional stoves, and a project scenario, assuming a gradual and
spatially even diffusion of ICS between 2000 and 2030. Under this
scenario it was assumed that an annual decrease of 5% in fuelwood
use was achieved by a “successful” intervention project.

4. Results

Fig. 3a,b shows trajectories for AGB, NRB (Eq. (5)) fNRB (Eq. (6))
and total fuelwood use. Red lines were generated using mean user-
defined parameters shown in Table 2 while light grey lines show
each MC realization using varying parameters from Fig. A.6 and A.7
in online Supplementary Material. AGB trajectories in the BaU and
ICS scenarios were quite similar, even when considering large
variations in MC realizations. A very slight decline can be seen in
the BaU scenario for the mean (red) trajectory, as compared to the
ICS one. In any case, this shows that fuelwood use appears to have
very little impact on AGB for the whole area.

However, fuelwood harvesting occurring in some places is non-
renewable as shown by NRB trajectories. In the BaU scenario, NRB
increases over time in most MC realizations, driven by steadily
increasing fuelwood consumption. Also, in certain places, the
annual increment of woody biomass is less than the harvested
volume of fuelwood. The ICS scenario shows a different outcome,
where NRB trajectories approach zero within the 30 year simula-
tion, driven by a steady decrease in fuelwood use.



Table 2
Woody biomass growth parameters used in the case study.

LCLU category rmax K

Rate SD tDM ha�1 SD

Forests and Woodlands
Coniferous forest 0.030 0.015 92 23
Broadleaf forest 0.020 0.010 110 28
Shrubland 0.015 0.008 10 3
Mixed Forest 0.025 0.013 50 13

Trees Outside Forests
Water bodies n.a. n.a. 0.1 0.1
Crop & Livestock n.a. n.a. 0.5 0.5
Bare land n.a. n.a. 0.2 0.2
Urban n.a. n.a. 0.2 0.2
Other n.a. n.a. 0.1 0.1

Note: Values for coniferous and broadleaf forests come from unpublished data
recorded in permanent plots in Honduras. Values for mixed forests were estimated
based on broadleaf and pine forests. Standard deviation values (SD) are conservative
guesses used in the Monte Carlo simulations. SD values recorded in the field are
narrower, but were not used as they do not account for the expected natural vari-
ation given the array of biophysical conditions across the study area. Trees Outside
Forests represent annual availability of wood, assuming mild pruning of live trees
and dead wood collection, but no cutting of live trees. Woody biomass supply of
water bodies represent dead wood usually found beside rivers and lakes. A small
amount is also assigned to urban environments and bare land as reflected by various
case studies. Parameter#21 in Table 1 for forests and woodlands and parameter#22
in Table 1 for trees outside forests. Additional details are provided in Appendix A-5
in online Supplementary Material.
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Positive NRB trajectories do not necessarily mean that wood-
lands within the studied landscape are being degraded into
depletion. Across the landscape, woodlands show some resilience
because the pixels experiencing positive NRB change with each
time step. This allows many pixels with positive NRB to recover,
effectively losing their “NRB” status. This results in lower losses
than if harvesting sites were permanently fixed, which closely
mirrors real harvesting practices and shows the importance of 1)
defining a time frame for an NRB study, and 2) avoiding static an-
alyses or snapshots (e.g. Ghilardi, 2010; Ghilardi et al., 2009).

This pattern of pixels shifting in and out of NRB status during the
simulation is sensitive to the number of harvest events, which is
directly related to the temporal and spatial resolution of the simu-
lation. We explore the sensitivity of outcomes to the percentage of
landscape being harvested at each iteration or time step below.

In addition, because fNRB is defined as the ratio of NRB and Ct
(Eq. (6)), its behavior over time is driven by both factors. This ex-
plains the near constant trajectory of fNRB in the BaU scenario: both
NRB and fuelwood consumption increase at a similar rate. With ICS
dissemination, fNRB steadily declines for most of the simulation.

To summarize entire simulations, Mofuss produces box-plots
showing distributions of NRB, fNRB, fuelwood use and fuelwood
use occurring only in NRB pixels, i.e. fuelwood use that directly
contributes to deforestation or degradation (Fig. 3c,d). Annual
average NRB consumption in the BaU scenario is about 3.5 times
larger than in the ICS scenario; the intervention saves between
50,000 and 215,000 tDM. Similarly, fNRB decreases by 10e50%.

In the BaU scenario, roughly 300,000 tDM yr�1was harvested
within NRB pixels, 100,000 tDM of which was NRB. Total fuelwood
savings between the BaU and ICS scenario are nearly 200,000 tDM
per year, which is two times the amount needed to “neutralize”
NRB. However, NRB consumption still averages about 30,000 tDM
yr�1. This is because the model deploys ICS evenly in space and
time, which is common practice in ICS projects. Thus, much of the
fuelwood savings occur in places with little or no NRB.
Fig. 3. Behavior of AGB, NRB, fNRB and total fuelwood use between BaU and ICS scenarios.
while light grey lines were generated in each of 100 MC realizations using varying paramete
fraction between NRB and total fuelwood consumption. Fuelwood use in the BaU scenari
assuming growth to be evenly distributed across regions and socioeconomic strata. Box-an
range (IQR) by the top and bottom of the box, and min/max of the range by the whiskers.
end of the box, shown by small circles. (For interpretation of the references to colour in th
An alternate approach would be to prioritize ICS dissemination
in zones with higher NRB. But how can we know the location of
communities that contribute the most to NRB? Fig. 4 shows the
spatial distributions of AGB, NRB, fNRB, fuelwood fromdeforestation
and total fuelwood use in both the BaU (Fig. 4a) and ICS (Fig. 4b)
scenarios for the first MC realization (red line in Fig. 3a,b). The
spatial distribution of NRB and fNRB are shown for the full simu-
lation period. These maps could help identify communities with the
highest fuelwood use, lying within or nearby high NRB “areas”. The
process of selecting key villages contributing the most to NRB could
Note: Red lines were generated using mean user-defined parameters shown in Table 2,
rs shown in Fig. A.6 and A.7 in online Supplementary Material. fNRB is calculated as the
o increases at a rate of 0.7%, driven by the population growth rate of Honduras and
d-whisker plots show the median of the MC distribution as a dark line, inter-quartile
Some plots have outliers, defined as data points between 1.5 and 3 IQR's from either
is figure legend, the reader is referred to the web version of this article.)
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be done manually, or by an optimization procedure (e.g. genetic
algorithm) that maximizes a reduction in NRB based on selective
deployment of ICS in space and time and could explicitly incorpo-
rate logistical or market-based constraints. Appendix B-1 in online
Supplementary Material show an extra output from Mofuss: the
spatial distribution of the standard deviation for NRB (Fig. B.1), total
fuelwood use (Fig. B.2) and fuelwood use driving forest degradation
(Fig. B.3). Appendix B-4 shows summary results by administrative
unit (Departments) and Appendix B-5 compares the effect on AGB of
fuelwood harvest versus forest losses and gains.

5. Sensitivities

Sensitivity of results to five input parameters are shown in
Fig. 5a,b. AGB shows greatest sensitivity to variations in K, the
maximumachievablewoody biomass stock per unit area. AGB is also
affected by growth rate (rmax) towards the end of the simulation, but
is insensitive to changes in other parameters. In contrast, NRB and
fNRB are sensitive to all parameters except for the prune factor (the
fuelwood harvest stochasticity modulator e see Appendix A). In the
case of the percentage of harvested landscape, NRB and fNRB rises
when a lower proportion of pixels are visited at each iteration. The
fuelwood harvested in each pixel is proportional to P(t)k, an index of
harvesting pressure by both types of fuelwood collectors, given
proximity to demand centers (Eq. (3)). When only a fraction of the
entire “harvestable” landscape is selected, the more inaccessible
places are not visited, and fuelwood is collected frommore accessible
pixels (subject to the stochastic seeding mechanism - see Appendix
A). When only a third or less of all “harvestable” pixels are visited
(Fig. A.7a), NRB and fNRB increase, as more fuelwood is harvested
from fewer sites. In addition, the proportion of pixels harvested
within a landscape is related to the size and spatial distribution of
villages using fuelwood, as well as the spatial and temporal resolu-
tion of the analysis: i.e. both pixel size and time step are important.

NRB and fNRB are also sensitive to K and rmax, as both param-
eters modulate the vegetation response after fuelwood extraction.
If accurate estimates of K and rmax are unavailable, uncertainty can
be built explicitly into the model's MC simulation. On the other
hand, if data showing how K and rmax vary according to different
biophysical parameters, such as soil quality, solar radiation or
altitude, Mofuss can accommodate extra layers in the supply
module to explicitly include these relationships. This could make
the model's fuelwood supply component more accurate. It also
allows for potentially interesting simulations estimating the im-
pacts of factors like drought or other climatic shocks.

NRB and fNRB are also affected by the availability of fuelwood
from TOF. These resources are known to be important sources of
fuelwood, but stock and growth data are rare. Thus, this parameter
should be allowed to vary within a wide but plausible range of
values in order to capture TOF contributions (Fig. 3).

The proportion of the landscape that is harvested also affects
fuelwood consumption. This effect arises because in some cases,
the fuelwood demand can exceed the standing biomass stock in a
given time step. When this occurs, the model is designed to allow
the stock to be fully cleared even though demand is not completely
satisfied. Effectively, wood harvesters return home with less fuel-
wood than they desire. When the proportion of the landscape
visited for harvesting is allowed to vary, this result is useful because
it shows that low proportions of visited land lead to unrealistic
reductions in fuelwood use. Modelers should expect people to visit
roughly the number of pixels necessary to fulfil their demand, with
some variation both above and below the exact number. However,
they probably will not visit all parts of the landscape due to factors
like restricted access to certain properties. There is also a lower
limit because of the desire/need to meet their energy needs.
Therefore, the proportion of harvested landscape should be
allowed to vary widely, particularly if data on specific harvesting
sites is unavailable. However, varying this parameter should not
lead to unrealistic reductions in fuelwood consumption.

6. Discussion

The results are congruent with what we know about defores-
tation and forest degradation associated with wood energy de-
mand (Masera et al., 2015). Based on three decades of study, we
know that fuelwood collection and harvesting for residential pur-
poses can contribute to localized deforestation and forest degra-
dation under certain conditions, some of which were explored in
our study by means of landscape-level spatiotemporal modeling.

Mofuss is composed of four salient technical features, some of
which were explored in previous models (e.g. Ghilardi et al., 2009;
Linderman et al., 2005; Pokharel et al., 2004; Rüger et al., 2008;
Sankhayan and Hofstad, 2001; Top et al., 2006; Whitman et al.,
2011). This is the first time the features are integrated as an
ensemble designed for landscape-level assessments:

1) It is a dynamic model, meaning that the results for a given time
step depend on the state of the system in the previous step,
making supply-demand dynamics much closer representations
of real-life situations, compared to the static balances used in
other models (Ghilardi et al., 2009). Static models use the
maximum sustainable yield (rmax in this assessment) as the only
forest growth parameter. This is misleading because it assumes a
constant harvest rate in space, without leaving any room for re-
growth periods if harvesting occurs elsewhere. The need for
modeling forest dynamicswhenaccounting forNRBand fNRBhas
already been stressed in the literature (Whitman et al., 2011). In
our case, we model growth by two parameters: rmax and the
maximum achievable stock (K). This simplified representation of
biomass growth is a dynamic one, exhibiting a density-
dependent response. Temporal dynamics are implicitly included
through periodic harvest events, which alter biomass density.

2) It is spatially-explicit: growth dynamics described above occur
at the pixel level, where the function parameters in Eq. (1)
depend on the location, given type of forest, soil, slope, aspect,
accessibility, among many other variables. So supply-demand
dynamics occur in each pixel, nearly independently of other
pixels. However, pixel-level dynamics are not completely inde-
pendent for two reasons. First, there is auto-correlation of un-
derlying variables (mostly biophysical parameters) and second,
the fuelwood harvest pressure in one pixel depends, in part, on
previous harvest events in other pixels. In brief, the spatio-
temporal nature of the approach allows not only for integrating
relations that are known to occur closely in space, but also to
tune the model's functions to the spatial variations of the pa-
rameters that compose them, in order to produce maps.

3) Most static fuelwood spatial models define a fixed area that is
accessible to collectors. These “fuelwood-sheds” (Ghilardi et al.,
2009) or “reachable” areas (The Gold Standard, 2011), are boun-
ded in space by “maximum distance that would be traveled to
collect fuelwood” from a given demand center (Avoided
Deforestation Partners, 2010). These are inherently artificial con-
structs because theydonot overlap and requirefixed thresholds in
distance or time that are difficult, if not impossible, to pinpoint or
define. In Mofuss, all pixels are influenced by all communities to a
degree, varyingwith a) the cost-distance from demand centers, b)
fuelwood consumption in villages and cities, and c) means of
transportation. Rather than thresholds, we use continuous decay
functions based on themodified IDWcomponent described above
that are relatively easy to calibrate with field data.



Fig. 4. a. Spatial behavior of AGB, NRB, fNRB, fuelwood from deforestation and total fuelwood use in the BaU scenario. b. Spatial behavior of AGB, NRB, fNRB, fuelwood from deforestation and total fuelwood use in the ICS scenario. Note:
Figure automatically generated by Mofuss.
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Fig. 5. Sensitivity of trajectories and annual average estimates over an entire simulation to variation of single parameters.
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4) Mofuss integrates the uncertainty of input parameters through
the MC module. To our knowledge, ours is the first fuelwood
modeling effort to use this approach within a spatially-explicit
context. Uncertainty is understood in this context as the rela-
tive lack of accuracy and precision in the parameters that define
critical inputs into Mofuss. These may represent statistical
variation in the original data, such as per capita fuelwood use,
which was measured by directly surveying households, or lack
of information on variables such as forest growth rates. In this
latter case, unknown parameters are defined by estimates
derived from a plausible range of values, such as measured
growth functions in similar forest landscapes.
7. Future research directions and conclusions

The proposed model, Mofuss, which we tested for the case of
Honduras, incorporates new features as compared with previous
models (Bailis et al., 2015; Ghilardi, 2009; Top et al., 2006), and
represents real-life situations more closely at the landscape level
regarding traditional fuelwood harvesting for residential purposes.
However, further improvements are needed in order to integrate
other common patterns and process associated with fuelwood
supply and demand. The most relevant improvements to be
developed in the future would be:

1) Verifying results with empirical field-based data is a highly
challenging but necessary task. One way to move forward is to
use remote sensing techniques for quantifying forest degrada-
tion (e.g. Ryan et al., 2012) over areas and time spans forecasted
by the model (e.g. 2000 to 2015), in places where degradation
driven by fuelwood extraction should be significant. The task
has to cope with multiple complexities, such as separating
overlapping drivers to prove causality in any observed changes.
Additional insights into validation of results are provided in
Appendix B-3 in online Supplementary Material.

2) Add an elastic function for demand based on scarcity: as fuel-
wood sources and supplies diminish, driven by over-harvesting
or more commonly by LULC processes, unitary consumption
should tend to diminish as well, and the propensity to change to
alternative energy carriers such as LPG should rise. These as-
sumptions are strongly influenced by various spatial (e.g.
proximity to the LPG distribution network) and non-spatial (e.g.
socio-economic data) parameters (Khuman et al., 2011). We are
modifying equations of the type 'predator-prey' to achieve this.

3) In addition to fuelwood use for residential purposes, include
other uses such as charcoal or fuelwood for small industries.

4) Include a module that looks for hypothetical cookstove diffusion
patterns that maximize carbon savings compared to alternative
dissemination patterns. The “best solution” module could be
based on a genetic algorithm that maximizes a so-called opti-
mization function given a set of penalization variables which
represent the logistic constraints of any particular cookstove
project.

5) Alternatives to “one-factor-at-a-time” sensitivity procedures,
which assume parameters to be independent from each other,
have been proposed in the literature (Saltelli and Annoni, 2010)
and should be explored for the present modeling approach.

Other important improvements for higher-end versions of the
model include:

6) A “climate” component that integrates emission factors of
traditional stoves and ICS and consequently translates NRB into
greenhouse gases or CO2eq values for BaU and project scenarios.
7) New versions of the woody biomass growth component will
include succession leading to different landscape mosaics,
biodiversity, competition between species, or responses to se-
lective logging (e.g. Medvigy and Moorcroft, 2012; Medvigy
et al., 2009, 2010; Ruger et al., 2008).

8) A longer term development is to cluster improved versions of
Mofuss with other DINAMICA-based models for grazing (e.g.
Bowman et al., 2012) and fires (e.g. Soares et al., 2012), so as to
integrate other forest degradation drivers. A notable example of
this, and with the broader scope to understand the biogeochem-
ical cycle, is the work by Liu et al. (2004). In this study, woodfuel
harvest and fallow activities are integrated with both LULCC and
Climate Change scenarios to explore long term impacts on carbon
dynamics. Although fuelwood harvest patterns are modeled in a
different way than the present study, it can be taken as a solid
reference in terms of techniques and approach for integrating
various drivers of ecosystem change in one modeling ensemble.

In conclusion, we have developed a model that explores the
impacts of complex processes such as fuelwood harvesting on the
environment. The model may be used in a range of applications
including quantifying the carbon dynamics in traditional fuelwood
systems, increasing our understanding of the processes that affect
energy security of poor, forest dependent people, and examining
various strategies to ensure long-term sustainability of woody
biomass resources.
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